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要約

　本研究では、畳み込みニューラルネットワーク (CNN) である You Only Look Once 
(YOLO) をロボットのリアルタイム物体検出に実用化することを探求する。ニューラル

ネットワークによって信頼性の高い物体検出機能を持つロボットが求められるようにな

り、処理の高速化・高精度化が進んでいる。しかし、これらの技術に対する需要は依然

として高いため、サービスロボットの開発には法外なコストがかかる可能性がある。こ

のような課題を解決するために、LEGO ブロックのカスタマイズ機能を追加した、低価

格の教育キット EV3-robot をサーバーとして、ローカルのパーソナルコンピュータ（PC）
をクライアントとして、物体検出に使用することを提案する。Ev3dev Python Socket 
Connection を利用したクライアント - サーバ通信フレームワークを構築し、YOLO の結

果をリアルタイムでローカル PC から EV3- ロボットに Bluetooth 経由で送信する。本研

究では、YOLO を用いたリアルタイムの物体検出のために、ワイヤレスカメラを搭載し

た PC 上で事前に訓練された Common Objects in Context (COCO) データセットをテストす

る。その結果、EV3 ロボットと YOLO 間の通信が成功し、物体検出が実証された。さらに、

リアルタイム物体検出時の CPU とグラフィック・プロセッシング・ユニット GPU の処

理時間を評価した。
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Abstract

　This research explores a practical application of You Only Look Once (YOLO), a Convolutional 
Neural Network (CNN), for real-time object detection in robots. The demand for robots with 
reliable object detection capabilities driven by Neural Networks has led to faster and higher 
accuracy processing. However, the development of service robots may be prohibitively expensive, 
because the demand for these technologies remains high. To address these challenges, we propose 
the use of a low-cost educational kit EV3-robot as a server and a local personal computer (PC) as 
a client for object detection, with the added feature of LEGO Block customization. We establish 
a Client-Server communication framework utilizing the Ev3dev Python Socket Connection 
to transmit real-time YOLO results from the local PC to the EV3-robot via Bluetooth. Our 
experiments involve testing a pre-trained Common Objects in Context (COCO) dataset on the PC, 
which is equipped with a wireless camera for real-time object detection using YOLO. The results 
highlight the successful communication between the EV3-robot and YOLO, demonstrating real-
time object detection. Additionally, we evaluate the processing times on both the CPU and the 
Graphic Processing Unit GPU during real-time object detection.

Keywords：  CPU, CNN, EV3-robot, GPU, Neural Network, Socket Connection, YOLO.
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1  INTRODUCTION

　Japan’s society has an aging population and a 
diminishing number of young people1). To handle this 
problem, service robots have been gaining attention2), 
for instance, robots are expected to fulfill daily indoor 
tasks, such as room tidying. To fulfill such tasks, 
robots must be able to recognize and detect a certain 
object3).

　In the field of Artificial intelligence (AI), neural 
networks (NN) have been extensively explored4,5,6). 
NN is equipped with a state-of-the-art perceptual 
ability, adaptive learning, and sophisticated human 
interaction. However, processing that information 
requires fast and high accuracy, especially in-service 
robots  where real- t ime interact ion is  almost 
unavoidable. This affects the increasing need for 
robots equipped with reliable NN. Therefore YOLO, 
has gained attention for its fast and high accuracy7).
　To achieve real-time object detection for the service 
robots, we explore the possibility of the low-cost 
educational kit of the EV3-robot for being able to 
integrate with YOLO. We utilize a client-server 
communication model with the EV3-robot acting as 
the server and the local PC as the client. By utilizing 
the feature of fast and high accuracy from YOLO's 
object detection capabilities, we aim to enable real-
time communication. This involves the setup of an 
Ev3dev Python Socket Connection via Bluetooth.
　In our previous hardware-based communication 
study8,9), the synchronization of communication 
processes played a pivotal role. The verification 
procedure encompassed several phases.
　Firstly, we build a client-server architecture for 
communication between the EV3-robot and the local 
PC. We conduct an evaluation of latency in this initial 
phase. The second one is to send pre-trained YOLO 
weight data from the PC to the EV3-robot. Lastly, we 
run a real-time connection between the EV3-robot and 
the YOLO model weights. Within this operational 
mode ,  the  EV3-robo t’s  motor  func t ion  was 

strategically set to stand by and enable the robot to 
survey and locate the target object until the desired 
class detection was achieved. Our experimentation 
also includes testing pre-trained COCO weights with 
YOLO on the PC in real-time using both CPU and 
GPU.

2  RELATED WORKS
　There are multiple methods for establishing a client-
server communication system for robots, which are 
categorized into 1, 2, and 3-tier architectures. In the 
context of 2-Tier architectures, this section is 
structured to discuss approaches where robots perform 
r ea l - t ime  ob j ec t  de t ec t i on  u s ing  YOLOv8 . 
Additionally, we conduct a review of recent robot 
education and their features.
(1) You Only Look Once version 8 (YOLOv8) as a 
detection system.
　YOLO was first introduced by Redmon et al.7). 
Figure 1 shows the YOLOv8 base model, which is the 
latest version of this framework which was created in 
January 2023 by Ultralytics10). By dividing an image 
into a grid of smaller regions and then predicting a 
bounding box and class probabilities for each object 
that is present in each region. For object detection, 
YOLOv8 utilizes the performance parameter by 
measuring the mean Average Precision (mAP).

　Equation (1) shows the Intersection over Union 
(IoU) for evaluating the performance of the model for 
object detection. The C represents the generated 
candidate bounding box, and G represents the ground 
truth bounding box containing the object. It calculates 
the ratio of the overlap and union between the 
generated candidate bounding box and the ground truth 
bounding box. The performance of the model improves 
as the IoU value increases, with higher IoU values 
indicating less difference between the generated 
candidate and ground truth bounding boxes.

九州情報大学研究論集　第26巻（2024年３月）

－ 16 －



 
Figure 1. YOLOv8 Backbone System’s architecture10).

Figure 2. Inter-process communication among client 
and server12).

　Equation (2) shows that the Precision-Recall Curve 
(P-R Curve) is a curve with recall as the x-axis and 
precision as the y-axis11). Each point represents a 
different threshold value, and all points are connected 
as a curve. The recall (R) and precision (P) are 
calculated. True Positive (TP) denotes the prediction 
result as a positive class and contains a label as to be 
true; False Positive (FP) denotes the prediction result 
as a positive class but contains a label as to be false, 
and False Negative (FN) denotes the prediction result 
as a negative class but contains a label as to be false.

　Equation (3) shows the definition for the Average 
Precision (AP) to find the area under the precision 
within the range 0 to 1 where p and r are represented 

as precision and recall. We calculated the mean from 
the (3) for the multi-class task object detection.

Figure 3. 2-Tier concept of client-server 
architecture12).

Figure 4. Real-time YOLO with EV3-robot scheme.

(2) Client-Server Systems
　Figure 2 shows a client-server system is a software 
that comprises both clients and server. In this system, 
clients are responsible for initiating requests, while 
servers handle the responses to these requests. This 
architecture facilitates inter-process communication, as 
it entails the exchange of data between both clients and 
servers, with each of them carrying out distinct 
functions13). The standardized protocols that clients 
and servers use to communicate include File Transfer 
Protocol (FTP), Simple Mail Transfer Protocol 
(SMTP), and Hypertext Transfer Protocol (HTTP).

(3) 2-Tier Client-Server Architecture
　Figure 3 shows a 2-tier client-server system 
architecture is a setup that consists of two primary 
components: a database server and a client PC. In this 
arrangement, users operate applications on their local 
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PCs (the clients) that establish connections to the 
server through a network12). Within this structure, the 
client application takes on the responsibilities of both 
coding and executing the programming logic, 
ultimately presenting the output to the user.

(4) Educational Robot
　Proficiency in programming and operating a robot is 
a crucial skill when it comes to the development of 
certain technologies, such as service robots. In recent 
times, the utilization of mobile robots has introduced 
engaging and motivating learning environments in the 
field of education14). An example of an educational and 
academic robot kit is the Mindstorms EV3 (EV3-robot) 
from LEGO. This kit is a versatile platform for 
constructing and customizing robots.

Figure 5. Listing 1.

　The EV3-robot15), is equipped with a variety of 
sensors, including light, and ultrasonic sensors. It 
operates using the Linux-based ev3dev operating 
system, which is stored on a Secure Digital (SD) card. 
The EV3-robot supports connections with computers 
or smart devices through Bluetooth operating at a 
2.4GHz connection. This robot is powered by an 
ARM-9 processor and comes with a built-in mini–
Liquid Crystal Display (LCD), along with four input 
and output  por ts .  These  features  enable  the 
development of control systems that allow them to be 
executed locally on the robot.

Figure 6. 45°EV3-robot rotation.

3  METHODOLOGY
　Figure  4  shows  a  schemat ic  o f  r ea l - t ime 
implementation of YOLO with an EV3 robot for object 
detection. This section primarily emphasizes the 
s y s t e m  b e t w e e n  Y O L O  a n d  E V 3 - r o b o t 
communication. First, develop a simple remote-control 
system and then follow the real-time system using the 
YOLOv8 model for detection. YOLOv8 as a target 
model, we rely upon Python environment management 
and setup process for the Ultralytics environment. 
Additionally, we utilize The Round-Trip Time (RTT) 
for latency consideration. 

(1) Client-Server communication - Ev3dev Python 
Socket Connection

　Client-server communication is a fundamental 
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concept in computer networking, allowing devices to 
exchange data over a network. In the context of 
developing the software part, we utilize the EV3Dev. 
During the real-time sequence, EV3Dev provides a 
Debian Linux-based operating system for EV3-robot 
communication to the PC through Python socket 
connections16). 
　Figure 5 shows a simple remote-control algorithm 
that sets basic movement as a foundational step using 
Python socket connections. This communication 
involves the use of Internet Protocol (IP) addresses to 
establish connections. The local PC side acts as a 
client, and sends commands to an EV3-robot, which 
serves as the server, enabling control over the robot's 
hardware movements in this case robot's motor.
　Figure 5 has five scenarios, for instance forward 
Command: When the user enters "forward" on the PC, 
the client sends the "forward" command to the EV3-
robot. The server (EV3-robot) then makes the robot 
move forward. The second command is the Left 
Command: When "left" is entered on the PC, the client 
sends the "left" command. The server turns the robot 
to the left. The third is Right Command: Similarly, 
"right" triggers the server to turn the robot to the right. 
The fourth is the Backward Command: "backward" is 
sent to the server, resulting in the robot moving 
backward. The last one is Exit Command: If the user 
enters "exit", the client sends this command to the 
server, and both the client and server sockets are 
closed, ending the program.

(2) Run the server from EV3-robot

　Figure 5 lines 1-29 demonstrates the foundational 
structure of a server setup. In the server code, it is 
essential to implement procedures for handling 
incoming client requests and generating responses. 
These actions encompass movement EV3-robot 
control motor movement. The Python socket server is 
capable of listening for incoming connections later 
from the client side. Figure 5 line 5 shows the IP 
address of the EV3-robot. Deploying and running the 

developed server code on the EV3-robot.

(3) Getting the weight data from cloud to local PC

　The trained COCO weight dataset17) from Ultralytics 
is stored in the cloud from ultralytics. Since we are 
testing the realtime communication during detection, 
we are only highlighting with specified class from 
COCO which is "person"(class_id = 0).
　Since the weight data model from YOLOv8 has 
already been downloaded, we add it to the client part 
and perform real-time processing loop for "person" 
object detection. The wireless camera is mounted to 
perform object detection using the YOLOv8 model, 
focusing on specific classes, and determines if a class_
id = 0 (person) is detected and sends a message 
accordingly via the socket connection.

(4) Latency

　Reducing latency is a priority in client-server 
communications, especially for YOLO applications 
that require real-time interaction and responsiveness 
f rom the  EV3-robot .  Achieving low-la tency 
communication is crucial for the current system, so we 
define latency as the round-trip time (ping time) in 
milliseconds (ms).

　Equation (4) is the mathematical representation. 
RTT is the total time it takes for a packet of data to 
travel from the source to the destination and back. 
Since the RTT measures the time, it takes for a packet 
to travel from the source to the destination and then 
back to the source, RTT divider is 2. For instance, if 
the RTT is 40 ms, the one-way latency (ping time) 
would be 20 ms.
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Figure 7. Feedback sequences for Experiment-2 and 3.

Figure 8. Remote Control Communication  
System Results.

Table 1. The latency results of the first four command 
keys in Experiment-1.

Table 2. Summary of Experiment-2 results.

Table 3. Summary of Experiment-3 results.
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Figure 9. YOLOv8 Real-time Object Detection using CPU-only results.

Figure 10. YOLOv8 Real-time Object Detection using CPU+GPU results.

Figure 11. Figure 11. Time Comparison between CPU-only Vs CPU+GPU 
*13th Gen Intel(R) Core (TM) i7-13700F   2.10 GHz 

**NVIDIA GeForce RTX 3060.
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(5) Run the trained YOLOv8 in local PC as a client

　Figure 5 lines 31-46 demonstrates the foundational 
structure of a client setup. In the client code, it is 
essential to implement procedures for requesting 
outgoing server responses and generating another 
request. These actions encompass feedback movement 
for EV3-robot. Figure 5 line 36 shows the IP address 
of the EV3-robot for the target connection from the PC 
(client) to the server (EV-robot).

4  EXPERIMENTAL AND DISCUSSION

　In this section, we performed feedback setup 
movement from EV3-robot, three distinct experiments, 
and an overall discussion. The first experiment 
involves a basic Remote-Control Communication. In 
the second experiment, we implement real-time Object 
Detection using YOLOv8 with CPU processing. The 
last one, in the third experiment, we perform real-time 
Objec t  Detec t ion  us ing  YOLOv8 wi th  GPU 
processing. Finally, we evaluate the overall system.

(1) Experiment setup for feedback

　In Figure 6, feedback from detection utilizing the 
EV3-robot motor functions. Scanning the surrounding 
environment is necessary for detection. The directions 
of the EV3-robot rotating towards-to during the real-
time object detection, we set to the four directional 
points. Denoted as “A,” “B,” “C,” and “D,” with 
every rotation 45° clockwise turn the direction orderly 
at regular intervals, in this case, we set it to 1 seconds 
(sec).
　Figure 7 shows a sequence representation of the 
motor rotation process during experiments 2 and 3. 
The standby mode which is called "scanning person" 
is created to enable the robot to scan while executing 
real-time processes of object detection until the desired 
class which is "person" is detected. Lastly, we set a 
break-processing step by incorporating an "Esc" 
command triggered by keyboard inputs to conclude the 

sequences.

(2) Experiment-1

　Figure 8 shows the results of a real-time remote 
control communication system that utilizes arrow 
direction keys from the keyboard. We measured the 
latency using (4). The outcomes of the initial four 
command keys are displayed in Table 1. Each key is 
associated with a confirmation message, allowing us to 
verify when the instruction was issued. Our findings 
indicate that the latency remains below 1000 ms.

(3) Experiment-2

　Figure 9 shows the result of YOLOv8 Real-time 
Object Detection using CPU-only as a client while 
connecting with EV3-robot as a server. 
　Table 2 provides a summary of the findings from 
experiment 2. In this real-time experiment, the total of 
Real-time is 4.5 sec within the real-world scenario. 
The AP of the detection process did not surpass 0.85.

(4) Experiment-3

　Figure 10 shows the result of YOLOv8 Real-time 
Object Detection using CPU+GPU as a client while 
connecting with EV3-robot as a server. 
　Table 3 provides a summary of the findings from 
experiment 3. In this real-time experiment, the total of 
Real-time is 4.5 sec within the real-world scenario. 
The AP of the detection process did not surpass 0.93.

(5) Evaluation

(5.1) Latency Consideration

　We acknowledge that latency for the current system 
is still far from the current wireless standard real-time 
situation18) which is not more than 0.3 ms. It 
potentially varies widely depending on several factors, 
including the network infrastructure, the distance 

九州情報大学研究論集　第26巻（2024年３月）

－ 22 －



between the client and server, the complexity of the 
communication protocol,  and the load on the 
network19).
　On the flip side, it is crucial to acknowledge that the 
latency in our proposed client-server communication 
sys tem may  in f luenced  by  no i ses  f rom the 
environments including internal and external factors. 
The acceptable latency thresholds may differ 
significantly based on the specific requirements of the 
application.
　For instance, a safety teaching robot is designed to 
serve as educational material for young learners. In 
this context, the robot's primary audience is youth, and 
an important consideration is to minimize the robot's 
impact on the environment or less harm. As a result, 
the "standard" latency may exhibit variations 
depending on the particular context and the use case at 
hand.

(5.2) YOLOv8 Performances in the Ev3-robot 
cases: CPU-only Vs CPU+GPU

　During performance evaluation, we repeat the same 
procedure in experiments 2-3 and expand it more. 

　Figure 11 shows the processing time for results 
between CPU-only vs CPU+GPU. The CPU+GPU 
results is overpowering the CPU-only in terms of time 
process by 20 times faster. Additionally, Tables 2 and 3 
indicate it may also the accuracy have higher stability. 
A factor that processing speed scenarios where real-
time performance is critical, a CPU+GPU for EV3-
robot may be preferred.

　On the flip side, for resource-constrained or cost-
sensitive applications, a CPU+EV3-robot still 
potentially delivers reasonable performance with trade-
offs in processing speed.

5.  CONCLUSION AND FUTURE WORK

　In conclusion, our proposed system provides the 

practical application of the YOLO CNN for real-time 
object detection. The approach of using an educational 
kit EV3-robot as a server and a local personal 
computer (PC) as a client to provide object detection. 
Our method demonstrates the communication between 
the EV3-robot and YOLOs and highlights the real-time 
object detection achieved. Furthermore, we conduct 
evaluations of processing times on both the CPU and 
GPU during real-t ime object detection while 
integrating with the EV3-robot's motor. In these 
findings, our research offers a promising solution that 
balances the need for efficient object detection in 
robotics with cost-effective educational platforms. This 
facilitates the integration of the NN field for young 
learners. This approach may open doors for future 
developments in real-time object detection and inspire 
the next generation of engineers and researchers.
　Our future studies aim to extend the scope of our 
investigations by incorporating additional components, 
including actuators and sensors within the EV3-robot. 
We are also looking forward to various applications, 
such as service robot tasks in the "follow me" 
scenarios. Furthermore, we intend to integrate these 
methodologies with motor functions and robot sensors 
to maintain the distance between the robot and the 
operator. By creating a more comprehensive and 
responsive robotic system, we expect to minimize the 
latency.
　We acknowledge that latency for the current system 
is still far from the current wireless standard real-time 
situation18) which is not more than 0.3 ms. It 
potentially varies widely depending on several factors, 
including the network infrastructure, the distance 
between the client and server, the complexity of the 
communication protocol,  and the load on the 
network19).
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