
YOLOを用いたPCとEV3-Robot間の物体検出結果の
クライアント・サーバー通信

Client-server Communication using YOLO
for Object Detection Results between PC and EV3-Robot

Dinda Pramanta, Ninnart Fuengfusin, A.R. Syulistyo, Hakaru Tamukoh
要約

　本研究では、畳み込みニューラルネットワーク (CNN) である You Only Look Once
(YOLO) をロボットのリアルタイム物体検出に実用化することを探求する。ニューラル

ネットワークによって信頼性の高い物体検出機能を持つロボットが求められるようにな

り、処理の高速化・高精度化が進んでいる。しかし、これらの技術に対する需要は依然

として高いため、サービスロボットの開発には法外なコストがかかる可能性がある。こ

のような課題を解決するために、LEGO ブロックのカスタマイズ機能を追加した、低価

格の教育キット EV3-robot をサーバーとして、ローカルのパーソナルコンピュータ（PC）
をクライアントとして、物体検出に使用することを提案する。Ev3dev Python Socket
Connection を利用したクライアント - サーバ通信フレームワークを構築し、YOLO の結

果をリアルタイムでローカル PC から EV3- ロボットに Bluetooth 経由で送信する。本研

究では、YOLO を用いたリアルタイムの物体検出のために、ワイヤレスカメラを搭載し

た PC 上で事前に訓練された Common Objects in Context (COCO) データセットをテストす

る。その結果、EV3 ロボットと YOLO 間の通信が成功し、物体検出が実証された。さらに、

リアルタイム物体検出時の CPU とグラフィック・プロセッシング・ユニット GPU の処

理時間を評価した。

キーワード： CPU, CNN, EV3-robot, GPU, NN, Socket Connection, YOLO.

Abstract

　This research explores a practical application of You Only Look Once (YOLO), a Convolutional
Neural Network (CNN), for real-time object detection in robots. The demand for robots with
reliable object detection capabilities driven by Neural Networks has led to faster and higher
accuracy processing. However, the development of service robots may be prohibitively expensive,
because the demand for these technologies remains high. To address these challenges, we propose
the use of a low-cost educational kit EV3-robot as a server and a local personal computer (PC) as
a client for object detection, with the added feature of LEGO Block customization. We establish
a Client-Server communication framework utilizing the Ev3dev Python Socket Connection
to transmit real-time YOLO results from the local PC to the EV3-robot via Bluetooth. Our
experiments involve testing a pre-trained Common Objects in Context (COCO) dataset on the PC,
which is equipped with a wireless camera for real-time object detection using YOLO. The results
highlight the successful communication between the EV3-robot and YOLO, demonstrating real-
time object detection. Additionally, we evaluate the processing times on both the CPU and the
Graphic Processing Unit GPU during real-time object detection.

Keywords： CPU, CNN, EV3-robot, GPU, Neural Network, Socket Connection, YOLO.

　　　 　論　文　　 　　

YOLOを用いたPCとEV3-Robot間の物体検出結果のクライアント・サーバー通信
　（Dinda Pramanta， Ninnart Fuengfusin， A.R. Syulistyo， Hakaru Tamukoh）

－ 15 －

1 INTRODUCTION

　Japan’s society has an aging population and a
diminishing number of young people1). To handle this
problem, service robots have been gaining attention2),
for instance, robots are expected to fulfill daily indoor
tasks, such as room tidying. To fulfill such tasks,
robots must be able to recognize and detect a certain
object3).

　In the field of Artificial intelligence (AI), neural
networks (NN) have been extensively explored4,5,6).
NN is equipped with a state-of-the-art perceptual
ability, adaptive learning, and sophisticated human
interaction. However, processing that information
requires fast and high accuracy, especially in-service
robots where real- t ime interact ion is almost
unavoidable. This affects the increasing need for
robots equipped with reliable NN. Therefore YOLO,
has gained attention for its fast and high accuracy7).
　To achieve real-time object detection for the service
robots, we explore the possibility of the low-cost
educational kit of the EV3-robot for being able to
integrate with YOLO. We utilize a client-server
communication model with the EV3-robot acting as
the server and the local PC as the client. By utilizing
the feature of fast and high accuracy from YOLO's
object detection capabilities, we aim to enable real-
time communication. This involves the setup of an
Ev3dev Python Socket Connection via Bluetooth.
　In our previous hardware-based communication
study8,9), the synchronization of communication
processes played a pivotal role. The verification
procedure encompassed several phases.
　Firstly, we build a client-server architecture for
communication between the EV3-robot and the local
PC. We conduct an evaluation of latency in this initial
phase. The second one is to send pre-trained YOLO
weight data from the PC to the EV3-robot. Lastly, we
run a real-time connection between the EV3-robot and
the YOLO model weights. Within this operational
mode , the EV3-robo t’s motor func t ion was

strategically set to stand by and enable the robot to
survey and locate the target object until the desired
class detection was achieved. Our experimentation
also includes testing pre-trained COCO weights with
YOLO on the PC in real-time using both CPU and
GPU.

2 RELATED WORKS
　There are multiple methods for establishing a client-
server communication system for robots, which are
categorized into 1, 2, and 3-tier architectures. In the
context of 2-Tier architectures, this section is
structured to discuss approaches where robots perform
r ea l - t ime ob j ec t de t ec t i on u s ing YOLOv8 .
Additionally, we conduct a review of recent robot
education and their features.
(1) You Only Look Once version 8 (YOLOv8) as a
detection system.
　YOLO was first introduced by Redmon et al.7).
Figure 1 shows the YOLOv8 base model, which is the
latest version of this framework which was created in
January 2023 by Ultralytics10). By dividing an image
into a grid of smaller regions and then predicting a
bounding box and class probabilities for each object
that is present in each region. For object detection,
YOLOv8 utilizes the performance parameter by
measuring the mean Average Precision (mAP).

　Equation (1) shows the Intersection over Union
(IoU) for evaluating the performance of the model for
object detection. The C represents the generated
candidate bounding box, and G represents the ground
truth bounding box containing the object. It calculates
the ratio of the overlap and union between the
generated candidate bounding box and the ground truth
bounding box. The performance of the model improves
as the IoU value increases, with higher IoU values
indicating less difference between the generated
candidate and ground truth bounding boxes.

九州情報大学研究論集　第26巻（2024年３月）

－ 16 －

Figure 1. YOLOv8 Backbone System’s architecture10).

Figure 2. Inter-process communication among client
and server12).

　Equation (2) shows that the Precision-Recall Curve
(P-R Curve) is a curve with recall as the x-axis and
precision as the y-axis11). Each point represents a
different threshold value, and all points are connected
as a curve. The recall (R) and precision (P) are
calculated. True Positive (TP) denotes the prediction
result as a positive class and contains a label as to be
true; False Positive (FP) denotes the prediction result
as a positive class but contains a label as to be false,
and False Negative (FN) denotes the prediction result
as a negative class but contains a label as to be false.

　Equation (3) shows the definition for the Average
Precision (AP) to find the area under the precision
within the range 0 to 1 where p and r are represented

as precision and recall. We calculated the mean from
the (3) for the multi-class task object detection.

Figure 3. 2-Tier concept of client-server
architecture12).

Figure 4. Real-time YOLO with EV3-robot scheme.

(2) Client-Server Systems
　Figure 2 shows a client-server system is a software
that comprises both clients and server. In this system,
clients are responsible for initiating requests, while
servers handle the responses to these requests. This
architecture facilitates inter-process communication, as
it entails the exchange of data between both clients and
servers, with each of them carrying out distinct
functions13). The standardized protocols that clients
and servers use to communicate include File Transfer
Protocol (FTP), Simple Mail Transfer Protocol
(SMTP), and Hypertext Transfer Protocol (HTTP).

(3) 2-Tier Client-Server Architecture
　Figure 3 shows a 2-tier client-server system
architecture is a setup that consists of two primary
components: a database server and a client PC. In this
arrangement, users operate applications on their local

YOLOを用いたPCとEV3-Robot間の物体検出結果のクライアント・サーバー通信
　（Dinda Pramanta， Ninnart Fuengfusin， A.R. Syulistyo， Hakaru Tamukoh）

－ 17 －

PCs (the clients) that establish connections to the
server through a network12). Within this structure, the
client application takes on the responsibilities of both
coding and executing the programming logic,
ultimately presenting the output to the user.

(4) Educational Robot
　Proficiency in programming and operating a robot is
a crucial skill when it comes to the development of
certain technologies, such as service robots. In recent
times, the utilization of mobile robots has introduced
engaging and motivating learning environments in the
field of education14). An example of an educational and
academic robot kit is the Mindstorms EV3 (EV3-robot)
from LEGO. This kit is a versatile platform for
constructing and customizing robots.

Figure 5. Listing 1.

　The EV3-robot15), is equipped with a variety of
sensors, including light, and ultrasonic sensors. It
operates using the Linux-based ev3dev operating
system, which is stored on a Secure Digital (SD) card.
The EV3-robot supports connections with computers
or smart devices through Bluetooth operating at a
2.4GHz connection. This robot is powered by an
ARM-9 processor and comes with a built-in mini–
Liquid Crystal Display (LCD), along with four input
and output por ts . These features enable the
development of control systems that allow them to be
executed locally on the robot.

Figure 6. 45°EV3-robot rotation.

3 METHODOLOGY
　Figure 4 shows a schemat ic o f r ea l - t ime
implementation of YOLO with an EV3 robot for object
detection. This section primarily emphasizes the
s y s t e m b e t w e e n Y O L O a n d E V 3 - r o b o t
communication. First, develop a simple remote-control
system and then follow the real-time system using the
YOLOv8 model for detection. YOLOv8 as a target
model, we rely upon Python environment management
and setup process for the Ultralytics environment.
Additionally, we utilize The Round-Trip Time (RTT)
for latency consideration.

(1) Client-Server communication - Ev3dev Python
Socket Connection

　Client-server communication is a fundamental

九州情報大学研究論集　第26巻（2024年３月）

－ 18 －

concept in computer networking, allowing devices to
exchange data over a network. In the context of
developing the software part, we utilize the EV3Dev.
During the real-time sequence, EV3Dev provides a
Debian Linux-based operating system for EV3-robot
communication to the PC through Python socket
connections16).
　Figure 5 shows a simple remote-control algorithm
that sets basic movement as a foundational step using
Python socket connections. This communication
involves the use of Internet Protocol (IP) addresses to
establish connections. The local PC side acts as a
client, and sends commands to an EV3-robot, which
serves as the server, enabling control over the robot's
hardware movements in this case robot's motor.
　Figure 5 has five scenarios, for instance forward
Command: When the user enters "forward" on the PC,
the client sends the "forward" command to the EV3-
robot. The server (EV3-robot) then makes the robot
move forward. The second command is the Left
Command: When "left" is entered on the PC, the client
sends the "left" command. The server turns the robot
to the left. The third is Right Command: Similarly,
"right" triggers the server to turn the robot to the right.
The fourth is the Backward Command: "backward" is
sent to the server, resulting in the robot moving
backward. The last one is Exit Command: If the user
enters "exit", the client sends this command to the
server, and both the client and server sockets are
closed, ending the program.

(2) Run the server from EV3-robot

　Figure 5 lines 1-29 demonstrates the foundational
structure of a server setup. In the server code, it is
essential to implement procedures for handling
incoming client requests and generating responses.
These actions encompass movement EV3-robot
control motor movement. The Python socket server is
capable of listening for incoming connections later
from the client side. Figure 5 line 5 shows the IP
address of the EV3-robot. Deploying and running the

developed server code on the EV3-robot.

(3) Getting the weight data from cloud to local PC

　The trained COCO weight dataset17) from Ultralytics
is stored in the cloud from ultralytics. Since we are
testing the realtime communication during detection,
we are only highlighting with specified class from
COCO which is "person"(class_id = 0).
　Since the weight data model from YOLOv8 has
already been downloaded, we add it to the client part
and perform real-time processing loop for "person"
object detection. The wireless camera is mounted to
perform object detection using the YOLOv8 model,
focusing on specific classes, and determines if a class_
id = 0 (person) is detected and sends a message
accordingly via the socket connection.

(4) Latency

　Reducing latency is a priority in client-server
communications, especially for YOLO applications
that require real-time interaction and responsiveness
f rom the EV3-robot . Achieving low-la tency
communication is crucial for the current system, so we
define latency as the round-trip time (ping time) in
milliseconds (ms).

　Equation (4) is the mathematical representation.
RTT is the total time it takes for a packet of data to
travel from the source to the destination and back.
Since the RTT measures the time, it takes for a packet
to travel from the source to the destination and then
back to the source, RTT divider is 2. For instance, if
the RTT is 40 ms, the one-way latency (ping time)
would be 20 ms.

YOLOを用いたPCとEV3-Robot間の物体検出結果のクライアント・サーバー通信
　（Dinda Pramanta， Ninnart Fuengfusin， A.R. Syulistyo， Hakaru Tamukoh）

－ 19 －

Figure 7. Feedback sequences for Experiment-2 and 3.

Figure 8. Remote Control Communication
System Results.

Table 1. The latency results of the first four command
keys in Experiment-1.

Table 2. Summary of Experiment-2 results.

Table 3. Summary of Experiment-3 results.

九州情報大学研究論集　第26巻（2024年３月）

－ 20 －

Figure 9. YOLOv8 Real-time Object Detection using CPU-only results.

Figure 10. YOLOv8 Real-time Object Detection using CPU+GPU results.

Figure 11. Figure 11. Time Comparison between CPU-only Vs CPU+GPU
*13th Gen Intel(R) Core (TM) i7-13700F 2.10 GHz

**NVIDIA GeForce RTX 3060.

YOLOを用いたPCとEV3-Robot間の物体検出結果のクライアント・サーバー通信
　（Dinda Pramanta， Ninnart Fuengfusin， A.R. Syulistyo， Hakaru Tamukoh）

－ 21 －

(5) Run the trained YOLOv8 in local PC as a client

　Figure 5 lines 31-46 demonstrates the foundational
structure of a client setup. In the client code, it is
essential to implement procedures for requesting
outgoing server responses and generating another
request. These actions encompass feedback movement
for EV3-robot. Figure 5 line 36 shows the IP address
of the EV3-robot for the target connection from the PC
(client) to the server (EV-robot).

4 EXPERIMENTAL AND DISCUSSION

　In this section, we performed feedback setup
movement from EV3-robot, three distinct experiments,
and an overall discussion. The first experiment
involves a basic Remote-Control Communication. In
the second experiment, we implement real-time Object
Detection using YOLOv8 with CPU processing. The
last one, in the third experiment, we perform real-time
Objec t Detec t ion us ing YOLOv8 wi th GPU
processing. Finally, we evaluate the overall system.

(1) Experiment setup for feedback

　In Figure 6, feedback from detection utilizing the
EV3-robot motor functions. Scanning the surrounding
environment is necessary for detection. The directions
of the EV3-robot rotating towards-to during the real-
time object detection, we set to the four directional
points. Denoted as “A,” “B,” “C,” and “D,” with
every rotation 45° clockwise turn the direction orderly
at regular intervals, in this case, we set it to 1 seconds
(sec).
　Figure 7 shows a sequence representation of the
motor rotation process during experiments 2 and 3.
The standby mode which is called "scanning person"
is created to enable the robot to scan while executing
real-time processes of object detection until the desired
class which is "person" is detected. Lastly, we set a
break-processing step by incorporating an "Esc"
command triggered by keyboard inputs to conclude the

sequences.

(2) Experiment-1

　Figure 8 shows the results of a real-time remote
control communication system that utilizes arrow
direction keys from the keyboard. We measured the
latency using (4). The outcomes of the initial four
command keys are displayed in Table 1. Each key is
associated with a confirmation message, allowing us to
verify when the instruction was issued. Our findings
indicate that the latency remains below 1000 ms.

(3) Experiment-2

　Figure 9 shows the result of YOLOv8 Real-time
Object Detection using CPU-only as a client while
connecting with EV3-robot as a server.
　Table 2 provides a summary of the findings from
experiment 2. In this real-time experiment, the total of
Real-time is 4.5 sec within the real-world scenario.
The AP of the detection process did not surpass 0.85.

(4) Experiment-3

　Figure 10 shows the result of YOLOv8 Real-time
Object Detection using CPU+GPU as a client while
connecting with EV3-robot as a server.
　Table 3 provides a summary of the findings from
experiment 3. In this real-time experiment, the total of
Real-time is 4.5 sec within the real-world scenario.
The AP of the detection process did not surpass 0.93.

(5) Evaluation

(5.1) Latency Consideration

　We acknowledge that latency for the current system
is still far from the current wireless standard real-time
situation18) which is not more than 0.3 ms. It
potentially varies widely depending on several factors,
including the network infrastructure, the distance

九州情報大学研究論集　第26巻（2024年３月）

－ 22 －

between the client and server, the complexity of the
communication protocol, and the load on the
network19).
　On the flip side, it is crucial to acknowledge that the
latency in our proposed client-server communication
sys tem may in f luenced by no i ses f rom the
environments including internal and external factors.
The acceptable latency thresholds may differ
significantly based on the specific requirements of the
application.
　For instance, a safety teaching robot is designed to
serve as educational material for young learners. In
this context, the robot's primary audience is youth, and
an important consideration is to minimize the robot's
impact on the environment or less harm. As a result,
the "standard" latency may exhibit variations
depending on the particular context and the use case at
hand.

(5.2) YOLOv8 Performances in the Ev3-robot
cases: CPU-only Vs CPU+GPU

　During performance evaluation, we repeat the same
procedure in experiments 2-3 and expand it more.

　Figure 11 shows the processing time for results
between CPU-only vs CPU+GPU. The CPU+GPU
results is overpowering the CPU-only in terms of time
process by 20 times faster. Additionally, Tables 2 and 3
indicate it may also the accuracy have higher stability.
A factor that processing speed scenarios where real-
time performance is critical, a CPU+GPU for EV3-
robot may be preferred.

　On the flip side, for resource-constrained or cost-
sensitive applications, a CPU+EV3-robot still
potentially delivers reasonable performance with trade-
offs in processing speed.

5. CONCLUSION AND FUTURE WORK

　In conclusion, our proposed system provides the

practical application of the YOLO CNN for real-time
object detection. The approach of using an educational
kit EV3-robot as a server and a local personal
computer (PC) as a client to provide object detection.
Our method demonstrates the communication between
the EV3-robot and YOLOs and highlights the real-time
object detection achieved. Furthermore, we conduct
evaluations of processing times on both the CPU and
GPU during real-t ime object detection while
integrating with the EV3-robot's motor. In these
findings, our research offers a promising solution that
balances the need for efficient object detection in
robotics with cost-effective educational platforms. This
facilitates the integration of the NN field for young
learners. This approach may open doors for future
developments in real-time object detection and inspire
the next generation of engineers and researchers.
　Our future studies aim to extend the scope of our
investigations by incorporating additional components,
including actuators and sensors within the EV3-robot.
We are also looking forward to various applications,
such as service robot tasks in the "follow me"
scenarios. Furthermore, we intend to integrate these
methodologies with motor functions and robot sensors
to maintain the distance between the robot and the
operator. By creating a more comprehensive and
responsive robotic system, we expect to minimize the
latency.
　We acknowledge that latency for the current system
is still far from the current wireless standard real-time
situation18) which is not more than 0.3 ms. It
potentially varies widely depending on several factors,
including the network infrastructure, the distance
between the client and server, the complexity of the
communication protocol, and the load on the
network19).

Acknowledgement
　This study represents a collaborative joint research
effort with partial support JSPS KAKENHI number
23H03468.

YOLOを用いたPCとEV3-Robot間の物体検出結果のクライアント・サーバー通信
　（Dinda Pramanta， Ninnart Fuengfusin， A.R. Syulistyo， Hakaru Tamukoh）

－ 23 －

References
1) F. Coulmas, Population decline and ageing in

Japan the social consequences. Routledge, 2007,
vol. 16.

2) Y. Yo s h i m o t o a n d H . Ta m u k o h , “F p g a
implementation of a binarized dual stream
convolutional neural network for service robots,”
Journal of Robotics and Mechatronics, vol. 33,
no. 2, pp. 386–399, 2021.

3) S. Hori, Y. Ishida, Y. Kiyama, Y. Tanaka, Y.
Kuroda, M. Hisano, Y. Imamura, T. Himaki, Y.
Yoshimoto, Y. Aratani et al., “Hibikino-musashi@
home 2017 team description paper,” arXiv
preprint arXiv:1711.05457, 2017.

4) G. Hinton, “Deep learning a technology with the
potential to transform health care,” Jama, vol.
320, no. 11, pp. 1101–1102, 2018.

5) Y. LeCun, Y. Bengio, and G. Hinton, “Deep
learning,” nature, vol. 521, no. 7553, pp. 436–
444, 2015.

6) H. Paugam-Moisy and S. M. Bohte, “Computing
with spiking neuron networks.” Handbook of
natural computing, vol. 1, pp. 1–47, 2012.

7) J. Redmon, S. Divvala, R. Girshick, and A.
Farhadi, “You only look once: Unified, real-time
object detection,” in Proceedings of the IEEE
conference on computer vision and pattern
recognition, 2016, pp. 779– 788.

8) D. Pramanta, T. Morie, and H. Tamukoh,
“Synchronization of pulse-coupled phase

oscillators over multi-fpga communication links,”
Journal of Robotics, Networking and Artificial
Life, vol. 4, no. 1, pp. 91–96, 2017.

9) D. Pramanta and H. Tamukoh, “High-speed
synchronizat ion of pulse-coupled phase
oscillators on multi-fpga,” in International
Conference on Neural Information Processing.
Springer, 2019, pp. 318–329.

10) G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics
yolov8,” 2023. [Online]. Available: https://github.
com/ultralytics/ultralytics

11) K. Boyd, K. H. Eng, and C. D. Page, “Area under

the precision-recall curve: point estimates and
confidence intervals,” in Machine Learning and
Knowledge Discovery in Databases: European
Conference, ECML PKDD 2013, Prague, Czech
Republic, September 23- 27, 2013, Proceedings,
Part III 13. Springer, 2013, pp. 451–466.

12) H. S. Oluwatosin, “Client-server model,” IOSR
Journal of Computer Engineering, vol. 16, no. 1,
pp. 67– 71, 2014.

13) S. Kratky and C. Reichenberger, “Client/server
development based on the apple event object
model,” 2013.

14) R. V. Aroca, V. P. Torres, L. M. G. Goncalves, A.
Negreiros, and A. Burlamaqui, “Cloud based low-
cost educational robot,” in 2013 16th International
Conference on Advanced Robotics (ICAR). IEEE,
2013, pp. 1–6.

15) “Lego education ev3”, 2023. Available online:
https://education.lego.com/en-us/downloads/
mindstorms-ev3/software, accessed on 30 January
2023. [Online]. Available: https://education.lego.
com/en-us/downloads/ mindstorms-ev3/software

16) R. Hempel and D. Lechner, “ev3dev,” 2023.
Available online: https://www.ev3dev.org/,
accessed on 30 January 2023. [Online]. Available:
https://www. ev3dev.org/

17) T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R.
Girshick, J. Hays, P. Perona, D. Ramanan, C. L.
Zitnick, and P. Dollár, “Microsoft coco: Common
objects in context,” 2015.

18) J. Dean, “Designs, lessons and advice from
building large distributed systems,” Keynote from
LADIS, vol. 1, 2009.

19) S. M. Rumble, D. Ongaro, R. Stutsman, M.
Rosenblum, and J. K. Ousterhout, “It’s time for
low latency,” in 13th Workshop on Hot Topics in
Operating Systems (HotOS XIII), 2011.

九州情報大学研究論集　第26巻（2024年３月）

－ 24 －

